Deep Insights | Uncertainty in Deep Learning

ثبت نشده
چکیده

Until now we have mostly studied the proposed approximate inference techniques empirically. In this chapter we turn to a more theoretical analysis, and concentrate mostly on the case of dropout, as it seems to be the most widely used among the various stochastic regularisation techniques. We begin by suggesting practical considerations for getting good uncertainty estimates, followed by a review of what affects predictive uncertainty characteristics. We then offer an analytical analysis in the linear case, answering many higher-level questions about the behaviour of the inference, and analyse dropout’s evidence lower bound (ELBO) correlation with test log likelihood. We continue by discussing various alternative priors to the standard Gaussian prior: we discuss the properties of a discrete prior, and (approximately) derive the optimal variational posterior with a spike and slab prior. The latter, quite surprisingly, turns out to be closely related to the structure of the dropout approximating distribution. We finish the chapter with a more philosophical discussion, examining the different types of uncertainty available to us from the dropout neural networks, and suggest a new tool to optimise the dropout probabilities under the variational setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty in Deep Learning

Deep learning has attracted tremendous attention from researchers in various fields of information engineering such as AI, computer vision, and language processing [Kalchbrenner and Blunsom, 2013; Krizhevsky et al., 2012; Mnih et al., 2013], but also from more traditional sciences such as physics, biology, and manufacturing [Anjos et al., 2015; Baldi et al., 2014; Bergmann et al., 2014]. Neural...

متن کامل

A Study on Expert Primary School Teachers’ Deep Insight and a Model to Develop that in Student Teachers

The present research has endeavored to study deep insight experiences of expert teachers of primary schools as an effort to provide a model to be expanded for student teachers to use. Taking a qualitative approach, the research used narrative inquiry. The statistical population consisted of primary school teachers. Snowball sampling was used, and data collection and analysis were carried out by...

متن کامل

Comparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station

Evapotranspiration is one of the most important components of the hydrology cycle for planning irrigation systems and assessing the impacts of climate change hydrology and correct determination is important for many studies such as hydrological balance of water, design of irrigation irrigation networks, simulation of crop yields, design, optimization of water resources, nonlinearity, inherent u...

متن کامل

The Relationship of Study and Learning approaches with Students’ Academic Achievement in Rafsanjan University of Medical Sciences

Introduction: Most experts consider learning approach as the fundamental basis of learning dividing it into two parts of deep learning approach and surface learning approach. This is an endeavor to investigate the relationship between learning and study approaches with academic achievement among students in Rafsanjan University of Medical Sciences. Methods: This descriptive cross-sectional stu...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017